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ABSTRACT

Biological net productivity, measured in terms of the change
in biomasé with time, affects global habitability and the quality
of life through biochemical and hydrological cycles and by its
effect on the overall energy balance (cf. Botkin (1982) or
Botkin, et.al. (1984). Estimating leaf area for large ecosystems
such as forests is one of the more important means of monitoring
this productivity today.

For a particular forest plot, the leaf area is often
estimated by a two-stage process. In the first stage, known as
"dimension analysis”, a small number of trees are felled
("sacrificed") so that their leaf areas can be measured as
accurately as possible. The leaf areas of the sacrificed trees
are then related to non-destructive, easily-measured features
such as bole diameter or tree height, by using a regression
modei. In the second‘stage, the non-destruétive features are

measured for all or for a sample of trees in the plots and then

used as input into the regression model to estimate the total

leaf area.

Because both stages of the estimation process are subject to
error, it is difficult to evaluate the accuracy of the final plot
leaf area estimates; indeed, it is not even possible to establish
a meaningful criterion of accuracy without resolving issues
involving sampling and modeling. This paper illustrates how a
complete error analysis can be made, usihg an example from a

study made on aspen trees in northern Minnesota.




1. BACKGROUND
A joint study of leaf area was made in the Superior National
Forest in northern Minnesota during the years 1983-4 by the

National Aeronautics and Space Administration and the University

of California at Santa Barbara. The main objective of this study

known as COVER (Characterization of Vegetation with Remote
Sensing) was to be able to relate the leaf area index (leaf area
per unit ground area) of typical boreal forest plots to
remotely-sensed multispectral scanner data, with the ultimate
goal of being able to estimate biological productivity by remote
sensing. Botkin and Running (1984) provide a discussion of
COVER's basic approach. For a full description of the project
the reader is referred to the forthcoming paper of Woods and
Botkin (1986).

For a particular forest plot, the leaf area is often

estimated by a two-stage process. 1In the first stage, known as

"dimension analysis", a small number of trees are felled

- ("sacrificed") so that their leaf areas can be estimated as

éccurately as possible. In practice, leaf area for entire trees

‘is not measured directly but is instead obtained from a ratio or

régression model usiné leaf weight as an auxilliary variable, as
in Watson (1937). The estimated leaf areas qf the sacrificed
trees are then related to non-destructive, easily-measured
features such as bole diameter or tree height, by uéing a
regression model. In the second-stage, the non—deétructive
features are measured for all or for a sample of trees in the

Plots and then used as input into the regression model to

estimate the total leaf area.



Because both stages of the estimation process involve
errors, it is difficult to evaluate the accuracy of the final
plot leaf area estimates. Some assessments of accuracy of
dimension analysis regression fits have been found in the
literature (cf. Pollard (1970 and 1972)), but they do not take
into account errors in the leaf estimates of the sacrificed
trees; in addition there do not appear to be any published
estimates of accuracy at a plot level.,'In order to establish a
meéningful criterion of accuracy, underlyiné sampling and
modeling issues must first be resolved. For example, should
finite-sampling or infinite-population models be assumed? How
should model error variances be structured? Should sampling be
random or should it be forced to cover the domain of the
predictor variables?

This paper describes how an extensive error analysis of the
COVER leaf area index (LAI) estimates was made, with the intent

of pointing out some of the practical problems that arose and how

 they were handled. Results given here deal only with plots of

aspen trees, although stands of other species were also included
in the study.

| The oféanization of the paper is as follows: Section 2
describes in a procedural sense how the LAI éstimaﬁes were made,
both at the tree level and at the plot level. Section 3 provides
ﬁhe mathematical setting for obtaining the LAI estimates and also
adaresses the problem of accuraéy estimation for both stages of
the estimation process; Section 4 provides some numerical results

including an error analysis, and the fifth and concluding section
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discusses the strengths and weaknesses of the COVER procedure,

suggesting how it might have been improved.

2. THE COVER ESTIMATION PROCEDURE
The target areas for which it was desired to estimate the
LAI, consisted of 32 circular plots of (prebonderantly) aspen
trees. Each plot had a radius of 30 meters and was sampled by
five circular subplots, (usually of radius 8 meters) arranged in
a quincunx. The 30-meter plots were roughly the areas "seen" by
a multispectral scanner carried aboard a heliéopter hovering

overhead (Figure 1).

2.1 Leaf Area Estimation for Sacrificed Trees

In COVER, the selection of the sacrificed trees was made so

- as to best represent the range of variation both in size and in

local environment, of aspen trees in the region. Tree sizes were
quantified in terés of “"diameter at breast height" (DBH), an
ééological term which is defined to be l/ﬂ times the perimeter ofv
the bole 1.4 meters from the ground. Sacrificed trees were
chosen near but not in, the plots. They were selected at random,
subject to two restrictions: (1) a minimum number of trees from
each of a predefined set of DBH strata had to be filled; (2)
unusually deformed or diseased trees were not taken, although no
effort was made to restrict the éample to trees in the best of
condition.

The raw data for the sacrificed trees comprised various

categories of measurements: those made for the entire tree,




»
those made for all branches, those made for selected branches,
and those made only for small samples of foliage. Measurements
made on the whole tree were non-destructive, consisting of DBH,
H.- the height of the tree and Hl - the height above ground of
the point where the lowest live branch joins the bole

(see Figure 2).

Measurements made'on branches and foliage were destructive
and were taken for each of three crown strata. Branches were
partitioned into crown strata (“upper"; "middle" and "lower") by
first computing the depth of crown of the tree, defined as DOC =
H-Hl: then dividing the crown into three parts so that if h is
the height at which a branch joins the bole, then the branch is
in the lower stratum if h < H1+DOC/3; the middle stratum if
Hl + DOC/3 < h < H-DOC/3; or the upper stratum if
h >H - DOC/3. A leaf was considered to be in a particular
stratum if its branch was in that stratum, regardless of the
leaf's actual position in the crown.

Given a tree whose crown was partitioned into strata as
above, the folowing destructive.raw data was taken:

(1) Total leaf area for a sample of leaves from the i-th

1,2,3), where i = 1 refers to the upper

stratum (i

2 refers to the middle stratum and i = 3

stratum, i
refers to the lower stratum. For a givep leaf, "leaf
area" is defined as its one-sided surface area. This
was measured in the field by an optical scanner.

(2) Total leaf fresh weight for each of the above samples.




(3) Branch dimensions - For each branch of the tree, (see

Figure 3) measurements of:-

(a) D

diameter at the base of the branch

(b) L .length of the branch (straight line distance
from base to tip).

(c) Ly = straight line distance from the base of the
branch to the point where the first live
sub-branch joins the branch.

(These measurements are analogous to DBH, H
and Hy, which pertain ﬁo the entire tree.)

(4) Total foliage fresh weight for

(a) a stratified random sample of branches for which a

foliage-weight-vs-branch-dimension regression model is

appropriate. These will be called “regféssion"
branches in the remainder of this paper.

(b) "special" branches for which a foliage-weight-vs=~

branch-dimension regression model is not appropriate.

Examplés of these are "leaders' - i.e. the very tops of

trees, which contribute to the total leaf area, but are

not true branches.

We will refer to all branches in (4) above as "sampled”
branches, an importéﬁt subset of which is the collection of
regression branches (4a). Only data from the regression branches
was used to fit the model (see Section 3.1.1).

A leaf area estimate for each sacrificed tree was made at
the stratum level and then summed to obtain an estimate for the

entire tree. For a given stratum the leaf area estimate was
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obtained by applying an area-to-weight ratio to a leaf weight ’
estimate using a regression model on branch dimensions. Because
there were insufficient numbers of regression branches to allow
séparate models within strata, one model was used for all
branches of each tree. The ratios were estimated by using a
linear model to smooth sampling errors associated with raw ratios

obtained from the data'in (1) and (2) above.

2.2 Plot-level Estimation -

Once leaf area estimates were available on the sacrificed
trees, they were regressed on functions of the non-destructive
tree-level measurements to obtain a "dimension analysis"
prediction model. During the second stage of the LAI estimation
process, this model was then used on each plot to predict its

total leaf area which was then normalized to a LAI estimate.

. 3.. MATHEMATICAL MODELS

In order to construct the LAI éstimates and a measure of
their accuracies, some ﬁnderlying éonditions and response models
must be assumed. This section discusses the problem of model
selection and shows how the LAI estimétors were obtained. We
begin with the estimation of leaf area for the sacrificed trees,
(within-tree models) then discuss the dimension analysis
(between-tree) model and finally, show how it is used to obtain
the plot-level LAI estimates. While it would be possible to use

one set of notation to identify relevant quantities in all stages

of the estimation process, such notation would be




cumbersome. Consequently, the notation will be simplified,
. expanded or even changed according to the needs of each
subsection below.

3.1 Within Trees

For a given sacrificed tree, let nij be the total area of
the foliage on the j-th branch in the i-th stratum; also let
ns= ZZnij be the total leaf area of the Free and let ; be its
estimate. The main contributions to the error in estimatingn
come from the regression estimates of léaf weight and from
ratioing to leaf area. Whether ; is biased or not and how its
precision should be estimated depends on (a) the sampling

strategy, (b) what models are assumed and (c¢) the form of the

estimator.

~3.1.1 Foliage Weight Regression Médel
Let N be the total number of branches on the tree and let Yj

be the total leaf weight on the j-th branch, j=1,...,N (ignoring
strata at present). The Yj can pe considered to have arisen in
one of two ways: as a set of fixed numbers, or as realizétions
of a random process through time. Under the first formulation, a
function of the Y's such as the total leaf weight, is estimated
as a population parameter with the sampling design playing an
important role.  In the second case, the function is random and:
is thus predicted by a model-based approach. Further discussion

of this topic may be found in Royall(1970, 1985), Kalton(1983)

and Hansen, Madow and Tepping(1983).
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Preliminary studies indicated that a good auxiliary variable

’

for predicting (estimating) Yj from the available branch
measurements D,L, and L,, was the branch depth of crown,

dc .= L-Ll. Plots of leaf weight vs dc for various trees

suggested the regression function E(Yj) = Bl +32dc. + BBdc?,

J J
where dcj is the value of dc for the j-th branch. Since the

foliage of a tree may vary throughout a year (or years) with
little change in the branch dimensions it seems approptiate here
to use the random ("superpopulation") model and think in terms of
predicting, rather than estimating the Y's. |

Let ¥ = (Yl,...,YN)T and let the N x 3 matrix

2, T

T
X = (x)]x,]---]2g)" where x5 = (1, dey, dey™)7. A

J J
superpopulation model for leaf weight, conditional on the éj was

then initially taken as

Y =X B+¢ : (3.1)

- where .E= (B1/B,/B3) and g is an error vector.
it was observed (see Figures 4a-c, for example) that (3.1)

fit more accuratel& for small brancﬁes than for large.
Examination of the>poolea residuals from preliminary regressions
of ¥ on X for all 32 tfees showed that their variance was roughly
proportional to the square of dc; hence it was decided to
represent tﬁe variance of € by

| Var(e|X) = 02, - (3.2)
where '02 is an unknown scalar, and V = diag (vl’V2’°°'VN) with
Vj = dcjz,

Empirical models such as (3.1) are only intended to




represent a local relationship; hence in order for one to have
confidence in the regression predictoé of Y, not only should the
fit of the model to the regression data be good, but also
prediction should be avoided for x-values outside the range of
the regression data.

Figures 4a-c which plot leaf weight against dc for trees
$21, #24 and #27 respectively, illustrate typical situations
which can occur. 1In these figures, vertical bars have been added
above the dc-axis showing the distribution of dc values for the
unsampled branches. In Figure 4c (Tree 27) the fit is good and
the dc values for all the unsampled branches lie well within the
domain of the regression points. 1In Figure 4a (Tree 21), the fit
is not very good, but reasonable predictions can still be made
for the unsampled branches because their dc-values lie within
those of the regression branches. In Figure 4b (Tree 24), the
fit ié not bad, but there are three large branches with dc-values
outside the domaig of the regression,.thus requiring
extrapolation. 1In a case such as this it would have’been better
go not sample the branches randomly, but instead to have made
sure that the largest branches were included in the regression,
as suggested by Royall (1970).

Let I* = diag (cl,..,cN)>where c; = 1 if the j-th branch is |
a regréssion branch, otherwise cj = 0. Standard estimation of g
with the model given by (3.1) and (3.2) consists of;finding the

T 1* yv"1(¥-X b). Although

vector b which minimizes L(b) = (X-i b)

the g obtained in this manner is unbiased and has desirable



necessarily produce useful predictions of Y for all dc values
likely to be encountered. In particular, foliage weight

predictions 9?§j
in one case, where a tree had many small branches, the estimated

were sometimes negative for small branches, and

foliage weight for the entire tree was negative. To prevent tﬁis
anomaly, the model was revised to constrain B to be nonnegative
and b was then calculated as the solution to minimizing L(b)
subject to b > 0. It is known - e.g. see Lawson and Hanson
(1974), that the constrained b is the soiution to one of the
unconstrained subset regressions using some or all of the inde-
pendent variables dco=l, dc and dcz; in fact it is the solution
to the subset regression which has the smallest value of L, given
that the (unconstrained) regression coefficients are nonnegative.
Even when € is assumed to have a.multivariate hormal

distribution, the distribution of b, or even its variance, is not
~known. In order to obtain an approximate expression for Var(b),
we prétend that the model (3.1) originally included only those
independent variables whose‘subset regression produced the
optimal nonnegative b, so that Xye B and b are now understood to
be p-dimensional vectors and X is a N x p matrix, where
1 < p <3, depending on the tree. In terms of the revised X, we
have

b= (XWX) "X'WyY - ‘ (3.3)
where ﬂ* = L*X—l. |
3.1.2 The Ratio Model

In addition to the above model for describing ﬁhe

relationship between leaf weight and branch dimensions, another

is required to relate leaf area to weight.

10 ‘.
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As descripbed 1n Section 2.1, samples of foliage were taken
from each stratum of each tree to obtain leaf area and leaf
weight measurements. Let Yik and Xip denote the respective total
area and toﬁal fresh weight of the leaves in the sample from the
i-th stratum in the k-th tree and let Y., and X; be the
corresponding population quantities (i=1,2,3; k=1,..,K).

To a first approximation, it can be assumed that the sample
ratio Lip = Yik/xik is én unbiased estimate of the population
ratio Rik = Yik/xik; i.e.

Tix - Rix * ®ix - | (3.4)
where ek is an error term. In general, one would expect Tik to
be a more accurate estimate of Ry when the sample is large; i.e.
when Xk is large. For this reason we assume Var (eiklxik)

-mz/xik for some positive constant wz.

Rather than base the estimation of leaf area of the
sacrificed trees on the rik directly, it was decided to first
'smooth the raw ratios using an additive model for the true ratios
which allow one to, incorporate information about all sacrificed
trees and strata to obtain the estimate of the ratio for a given
tree and stratum. The true-ratic model is given by

Rix Swto; + By +dyy (3.5)
where U is an overall mean, aj is a stratum effect, Bk is a tree
effect wichai = Zsk = 0, and the dik afe mutually independent
random errors with E(dik) = 0 and Var(dik) = 1 2-

Let Pik = E(Rik) = u+ a i +.Bk' The additive model for the

Pik is partially justifiable by ecological considerations. It is

a recognized fact (cf. Talbert and Holch (1957)) that for a given
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tree, "sun" leaves (those high in the tree crown) tend to be

#

thicker and smaller in area than "shade" leaves (those low in the
crown); thué creating a tendency for the area-~to-weight ratios to
be ordered by strata with the lowest ratio for the upper stratum,
and the highest ratio for the lower stratum. If a,; <a, < aj
equation (3.5) imposes this theoretical ordering on the expected
ratios for each tree.

Combining (3.4) and (3.5) gives

- [ .
ik = Wra; + By ey _— (3.6)

' = 1
where e ik eik + dik' It is not unreasonable to assume the eik

and dik to be uncorrelated in which case

2

_ 2
Var(e‘iklxik) = W /xik + T (3.7)

-~

Let Pjk = M + o + Bk where u, o, and Bk are obtained

i
from fitting the model (3.6) by weighted least squares with
weights proportional to Xike It is advantageocus (in terms of a

'smaller prediction error) to predict R,, by r;

ik when the second

term of (3.7) domipates,'or by Sik when the first term dominates.
Iq this study, we assumed the lattef case to be true because (a)
tﬁe sample sizes of leaVés were fairly small, and (bj it was felt
that the Rik were well represented by the additive model - i.e.
T? was relatively small.
Let ;* be a 3K x 1 vector of the ;ik and let r* be a
corresponding vector whose components are the Like Then one may

ﬂ* * .
write p = U r , where U is a function of the design matrix of

the model (3.6) and the Xige For purposes of computing the

estimated mean squared prediction error (MSPE) of ﬂ for a given

12
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tree (say the k-th), it is assumed that the 3 x 1 vector P =
= - - T . . . . . .
(plk’ Pok? p3k) is distributed as multivariate normal with mean
T . . .
By = (Pyyr Poyr P3,)  and covariance matrix Yy .. where y , 1is the

submatrix corresponding to the k-th tree, taken from the

* ~% *
covariance matrix ¥ of p . The matrix ¥ is of the form
2 2 .
+ .
W A1 T A2, where Al and A2 are functions of U and the xik'
*
however ¥ cannot be estimated unbiasedly because there is no

way of estimating mzAl + 12A2 directly or w2 and 12 separately

with the available data. An approximately unbiased estimate of

. A _ -
¥Y* jg ¥* = asz_ll_D_ l(x)y_T, where D(x) = diag(xik) and w2 is the
residual mean square given by

w = [szik(rik pik) 1/2(k-1) (3.8)

This estimate would be unbiased if 12 were zero.

3.1.3 The Estimator of nand its MSPE

Reverting to the discussion of the prediction of n for a
given tree, we drop the subscript "k" of Section 3.1.2, using ;
to mean the 3 x 1 vector of smoothed ratio estimates and ¥ to
mean the 3 x 3 covariance matrix‘of ; for the tree. Likewise,
"R" will desigﬁate the 3 x 1 vector of true ratios for the tree
with E(R) = p. |

The foliage weight estimate for a stratum was the sum of two
compbnents: one being the sum of measured weights éor sampled
brancheé; the other being the sum of predicted weights for the
unsampled branches using the model (3.1). . Let &is be the N x 1

membership vector for the sampled branches of the i-th stratum;

i.e. the v-th element of e,

is is zero or one,being unity if and

13




a sampled branch. Similarly, let iy be the membership vector
for the unsampled branches in the i-th stratum. Then the

estimated foliage weight for the stratum is

Y; = & Y + e.
PW)Y (3.9)
where P = X(X'W X) "X". Let y = (Yl' Yoo y3)T. The total leaf

area estimate is given by

~

n=y o _ : (3.10)

~

In terms of Y, Y the actual foliage weight for the i-th

T )Y = EiTX' where

T
stratum can be expressed by y; = (e +e 0

is
e; = 8¢ + eiu’ Let y = (yl, Yor y3)T. The actual leaf area
is thus equal to X?E' To compute the MSPE of TN, let the 12 x 1

vector z be defined by

z = (y5, yI, of, rRDOT (3.11)

and the 12 x 12 matrix A be given by

T ) 0

g o I O
8 o 0 -I (3.12)
A= (1/2)
r 8 9o 0
LQ =L 0 o
. . . . T _ T T .
where I is a 3 x 3 identity matrix. Then 2°A z = y'p- y R; 1.e.
it is the prediction error n - np .
Let ¥ = E(y) = (Ef X ELJ Sg 3 B8 2§ §~Q)T. From the revised

version of (3.1) and from (3.9), it can be seen that

14




E(y)

From previous assumptions we also have

]
m
<
[
I~

E(p) = E(R) = p. Assuming further that Y is independent of p
)

=u - p - uTD = 0, so that the MSPE of n is the

yields E(z A
variance of z A z.
Let E(z) =7 and Var(z) = I. If z is assumed to be

distributed multivariate normal, then

MSPE(T‘;) =Var(zAz)-4gA2:Ac+2tr(§ ZA) \ (3.13)

We have already seen that g = (u ,u ,Q ’ 2?) To evaluate
(3.13) it remains to specify I which is of the form
(I, I il 9
Z21 I 0 9
2= |0 0 y T
0 0 2o rzrj (3.14)

where L,;, L,, and 'I;, are the 3 x 3 matrices Var (y), Var (y)and

Cov (y.Y). respec?ively,énd §21 = 2§2 In terms of (3.12) and

(3.14), equation (3.13)_becomes
MSPE(n) = uT (¥ + 12(I-0-UT) hutp (E) 1K) 0=y *E00) 0
+ trizll_\[ +-r (2;_22 Ly, - UTZIZ)I | (3 15)
The elements of 2117 23> and Zp, are derived from the model

given by (3.1) and (3.2), and from the definition of x in (3.9).

15




Specifically, it can be shown that

T T T

_— v ., ‘e’ .

'yiw © [Sis— Cirs * Siug gi'r+gir£ Li'u glug Sl'U] (3.16)
*

.» It can be similarly shown that

T
= sz Civg ¥ Siu P Ei'r] (3.17)

and

Cov (y ,yy )= o°eiV e, (3.18)

The MSPE of n is estimated by substitutingyestimates for the
unknown parameters in (3.15); i.e. y for u, p for p, ¥ for ¥, and

~

for .. (i,j = 1,2). The matrix ¥ is the appropriate

“Lij 2ij

submatrix of_g*of Section 3.1.2, while the'gi. are estimated by

2

substituting 02 for g~ in (3.1l2a-c), where 02 is the residual

mean sguare given by

62=(-xb0W@-xb)/np), (3.19)
and n = ch is the number of observations in the foliage weight
regression. In this analysis, terms of (3.15) involving 12 are
neglected; however- (1) '1"2 is presumed small and (2) the effect
of 12 is absorbed into 62 and hence E. Ignoring the oﬁher blocks
of 3§ involving 12 is equivalent to treating R as a fixed, rather
than a random quantity, thus making (3.15) more like a "variance"
rather than a MSPE as far as the ratios are concerned. If
multiple observations of area-to-weight tatioé had been taken
within strata, it would have been possible to estimate 12. It is

suggested that this be done in future studies of this type.

3.2 Between Trees - The Dimension Analysis Model

Given estimates of leaf area for the sacrificed trees, the
next step in the LAI estimation process is to relate these

16

el




estimates to the nondestructive measurements L, L, and DBH.

1
Let x be a p x 1 vector of functions of L, Ll' and DBH which
predict leaf area, n through a model

n = YTE + 4 (3.20)

where d is an error term, independent of x, with a zero mean and
a variance v(x) (conditional on x) which is an increasing

function of E(n ) = 1?5. (The actual functions of L, L, and DBH
producing the components of x are described in Section 4.2.) The

leaf area for a new tree with given x-vector x', may then be

predicted by

~

n = S?E' (3.21)
where g is an estimate of Y obtained from the sacrificed tree
data.
3.2.1 Estimation of Model Coefficients

Let Myer X and dk play the respective roles of n, x and d
~in the model (3.20) for the k-th sacrificed tree (k = 1,..,K).
Also for the k-th sacrificed tree, let ;k be given by (3.10). To
a first approximation ;k is an unbiased predictor of Nk with MSPE
given by (3.15). if the within-tree estimation errors are
independent of the between-tree errors dk' then the
ﬁk follow a revised model

. ﬁg'= 1 ox, d; | (3.22)

with dkf being similar to d, s, except that Var(dLl5k5 = V(ik)
+ Vo where Yok is the within-tree MSPE given by (3.15) for the
k-th tree.

Ideally, it would be best to use the weighted least-squares
estimate g = (X' ') 'X'V7'n for g in (3.21),

17




wnere n = \NjsllyreerNp) + & F (§l|§_2|...|§_K)’ and
V = diag iv(x,) + v, 1; but the function v(.) is not known aﬁd“
can only be roughly estimated from the data. Unlike the
within-tree situation for which there were many observations of
residuals available for estimating a weighting function, there
were only 32 here. With such a small sample size, estimating the
»weights from the data could seriously bias the estimate of Y. As
a consequence, the unwéighted quantity

g = "0 %" o (3.23)
was used as an estimate of Y. Of course, gAis still an unbiased

estimator of Y under the model (3.22). 1Its covarianée matrix is

given by _ -
W=y xoof ot (3.24)

3.2.2 Estimation of the Model Variance Function

For purposes of estimating the precision of the plot LAI
estimate, it was necessary to have at least rough estimates of
the function v(.) and the matrix W. These estimates were
obtaiﬁed through a parémetric model using the residuals of the
unweighted regres;ion as observatiohs. Let e = i - X g be the

K x 1 vector of residualé. Under the model (3.22) the covariance

matrix of e is

var(elx) = ¥ - x (X0 7V - v x 7"
x0T o . (3.25)
and the residual sum of squares ng has expectation
E(eTe) = trivi - eri(xTx)"1xTv x)1. : (3.26)

The non-leading terms of both (3;25) and (3.26) are of order 1l/K.
Neglecting them is equivalent té treating the residuals as actual

observations of the dk’ in (3.22). Assuming that this is a
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reasonable approximation gives

Ok (3.27)

and
Var(ek)= v(ik) + Yok (3.28)
where e, is the k-th component of e .
Suppose now that v(x) can be modeled by
v(x) = 0,(Y"x)% . (3.29)

where 8, and el are parameters. From (3.27), we have EhJE)=

85 2(Y xk) 1 + ZIka G1ven an est1mate of 61, say 61, 60 can be estimated

by setting eI equal to its est1mated expectat1on, i.e.
. S T. \3
8, = (e'e iv"k)/ i(g_ %)% (3.30)

= G(al), say,

where 60 is the estimate of 8g-

Consider the normalized residuals
z, = ek/[c(él)(g?gk)agll/z} (k=1,..,K) where 6, is a trial value
of.el. Given the assumptions of this section, 1if 51 is close to
61, the 2, should have abproximately unit variance; in fact, if
'thg residuals are normally distributed, the 2, should resemble a
random sample from a N(0,1) populatioh.'_We therefore choose 81
to be the value of 51 which minimizes the Kolmogorov-Smirnov
statistic D, which is the maximum absolute deviation between the
empirical distribution‘function of the z, and that éf a standﬁrd
normal distribution. Once 51 is found, ;0 is already available
as G(go). Let ; be the sample analog of Vok For an arbitrary

ok
X, v(x) is then estimated by
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v(x) =8,(g x)" (3.31)

and W is estimated by using Vv = diag (v(x;)+vy ), foxr W im

(3.24).

3.3 The LAI Estimate and its Precision

Given g, the total leaf area of all trees in %the subplots
within a plot can be estimated by the application of (3.2L) since
X is known for these trees. The total leaf area im them
normalized by the total subplot area to-ébtain the LAY estimate.
There are two main independent contributioné of erzmyr in this
estimate. The first is a between-subplot sampling @rron cdue to
the nonhomogeneity of the LAI throughout the plot. 7Zhe secomd
error is the discrepancy between the model-predicted leafll arean
and the actual leaf area within the subplots. It i= nout

unreasonable to assume these two errors independent, im: which

_case the overall MSPE of the LAI estimate is

EQX - A)2 = B(A-M)2 + E(x -2)? (3.32)
where i is the estimated LAI over the subplots (and al'swo is the
LAI estimate for the whole plot), Als the true LAI oi the plot
and A is the true LAI over the subplots.

For purposes of evaluating the first term of (3.32), the
leaf area péttern for the whole plot is.considered fiwedi s© that
the LAI's of the subplots become fixed numbefs once-tﬁevsubplots
are chosen. For the second term, we éhall conditicm on ‘the

observed x-values for both the sacrificed and the plot trzes. We

thus use
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ol

EfCA - M)2[LT + BIO - )2 ]x]

O
]

= Q; +0Q, . (3.33)
instead of (3.32) as a measure of precision of i. Here,
"..|L1" denotes conditioning on a fixed plot leaf area pattern.
3.3.1 Between-Subplot Sampling Variance

The variance of the between-subplot sampling error is
difficult to estimate without knowledge of a leaf area intensity
function over the whole plot; i.e. the leaf area "pattern". As a
practical alternative, we pretend that the whole plot consists of
M subplots, of which we have selected m'at fandom. Let £ denote
the sampling fraction m/M and let Ai and Ai denote the respective
true LAI and area of the i-th subplot (i = 1,..M). For the i-th
sampled subplot let Ai and ay be the respective LAI and area
(i =1,..,m), and let ;i be the estimate of Ay obtained from the
dimension analysis model.

We shall now condition on the leaf area pattern for the plot
so that the Ai may be regarded as fixed numbers, as opposed to
the random variables they would be under the model (3.20). With
this restriction, the X, are random only because of the subplot
sampling process. The LAI over.the m sampled subplots is then

m

A Za;. For the whole plot, the LAI is

?(ai/af)ki’ where a.

A = g(Ai/A-)A i Where A, = gAi. The difference A-A is the error

due to sampling the plot. When the afeas of all M subplots are-
equal, A is an unbiased estimator of A; however when the areas are
unequal, A becomes a ratio estimator and is only approximately
unbiased. Assuming the bias is neglibible, Q; = Ef(x- A)ZILI =
Var {AIL}. In the general case of unequal Ai' we have the
approximation (cf. Cochran, 1977, p.1l55)
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0= [(1-f)/m]M* g(Ai/A.)‘/(Ai “ M) Jmm1g. e,
1 .
If the Xi were known, Q, would be estimated by ’

- _ ¢ m 2 - 2 _
q; = (1 fim §(ai/a.) (Ai - A) /(m-1) (3.35)
where £ = a./A. replaces f in (3.34). Since the xiare not known,

we replace them with their estimates ii to obtain
0, = (1-f)m Fa;/a0)?(x;-0)%/(m=1) (3.36)
i
as the estimate of Ql'

3.3.2 Within-Subplot Prediction Error
Let nij be the true leaf area of the j-th tree in the i-th
subplot and let 515 be the vector of leaf area predictors for

that tree, with ﬁ.. =ZT and Xx.. =.ZZ§ij. The estimate of the

nij
LAI for the m sampled subplots is X = g?i../a. and the actual LAI 7?
i A=N A, = = T

is E(ai/g.) i Nn../a. From (3.20), nij 1~£ij + dij where

E[dijliij] = 0, and Varld ] = v(x..). Since g is an

ij'=ij =ij
unbiased estimator of Y, the conditional mean prediction error of

-~
A -~ ) is zero; i.e.

E(A -A|x) = E(g x../a.|x)=E(M../a.]x) (3.37)
= (YTx. =Y x..)/a. = 0

The second term (Q,) in (3.33) is thus the conditonal variance of

-~

A - )\, so that

0, = EI(x =2 )3 |x1 = Varf(x -a)|x

Vari(g?i../a. -n../a.)|x}

(1/2.2) [xF.Wx..+ ZZv(x,.)] : (3.38)

ij ij

Its estimate, Q, is obtained by direct substitution; i.e.

~ 2 T ~ -~ -
0, = (1/a%)[xe.W x.o+ ZRyu(x. .

< - = .13 1]
where W and v(.) are the respective estimates of the matrix W and

)1 (3.39)
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the function v(.) from Section 3.2.2. The term 5?.ﬂ X.. reflects

the fact that Y’ is estimated, while the other term-’ZZv(xij

reflects the actual model error. By increasing the number of

)

sacrificed trees, the former term can be made arbitrarily small,
but not the latter. In Section 4.3, the effect of each of these
terms on 02 is evaluated numerically to give a feeling for

whether the sample size of sacrificed trees was adequate.

4,0 NUMERICAL RESULTS
In this section, numerical results from the COVER experiment
are given. For the most part these results are organized along
the lines of the theoretical development in Section 3 so that a
subsection numbered "4.x...y" consists of a numerical
illustration of the topic covered under Section 3.X...y.

4.1 Within Trees

Recall that in the COVER expériment 32 trees were
destructively sampled so as to best estimate their leaf area;
that for a given tree, foliage weights were estimated with the
aid of a regression model and then ratioced to leaf areas for each
of three crown strata. These trees are identified by a number
ranging from 1 to 32 which correspoﬁdé'to the order of their
selection. Table 1 lists the trees in order of size (i.e. DBH)
showing the Tree Number, the DBH in cm, H iﬁ meters, the total
number of branches (N), the number of sampled branches (NS) and
the foliage weight regression s#mple size (n). )

4.1.1 Foliage Weight Regressions

From Table 1 it can be seen that the foliage weight was
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measured for anywhere between 20 and 100 percent of the brénchgs[
For purposes of measuring foliage weights, it was originally
intended that a census of branches on the sacrificed trees be
taken. For the first five trees, a census or near-census was
made, but the excessive amount of work encountered soon made if
clear that some sort of sampling was necessary. For this reason
the sampling fractions for the other trees were considerably
smaller (except Tree 11 which had only 9 branches, all of which
were sémpled). ‘

While the relationship between leaf weight and branch
dimensions was not overly strong, it was usually good enough to
justify the use of regression to estimate the foliage weight
totals within strata for trees in which branches were sampled.
For each tree, Table 2 gives the dimension (p) of the revised
regression model of Section 3.1, the regression coefficients
given by (3.3) and the t-values associated with the coefficients,
assuming the p-dimensional model. The coefficients bi are scaled
to obtain the predicted foliage weight (;) in grams, from the
b?anch depth-of-crown (dc) in meters, from the equation

y = bo + bl(dc)+ bz(dc)z. Terms deleted from the model by the

constrained least-squares algorithm are indicated by a dash "--".

In only 7 of the 32 regressions were ail three possible terms
included in the revised model, while two terms were used in 24
cases and one term in one case.

For many trees, more terms could have been deleted becgﬁse
they did not contribute signifiéantly to the regression fit;

however for simplicity, any terms with nonzero coefficients as
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found by the algorithm, were retained. From Table 2 it can be
seen that in most cases where the intercept term was included in
a model, itrwas found to have a small t-value, but that the
linear term was usually‘significant and the quadratic term was
almost always significant when included in a revised model.
4.1.2 Estimation of Area-to-Weight Ratios

The average raw ratio of leaf area to leaf weight was about
4.9 mz/kg. As predicted, these ratios tended to be greatest in
the lower crown stratum and smallest in'the upper crown stratum,
although the magnitude of the difference waé fairly small
(generally about 10 percent). For 26 of the 32 trees, the
upper-stratum ratio was the lowest of the three, while in 21
cases the lower stratum ratio was the highest. For 19 trees, the
three ratios ranked exactly as expected; i.e. inveréely with the
crown position. The tree effect was even more noticeable, with
the average raw ratio ranging from about 4.3 mz/kg for Tree 29
to 7.3 mz/kg for Tree 30. 1In general, the largest ratios were
observed on small trees.

As explained in Sec;ion 3.1.2, it was decided to replace the
raw ratios (rik) by smoothed one§ (;ik) which were felt to be
better predictors of the actual ratios. Figure'S shows the tik
plotted against the Eik for i =1, 2, 3; k =1,2,...,32. Points
lying bethen the two lines are those cases (73 of 96) for which
;ik was within 5% of fik' Without réplicated samples, it was not
possible to formally test whether the additive model (3.6) was
correct, but it appeared to fit the data well. The &i were in

the "correct" biological order (decreasing with i), thus so were

the pik for each k. Estimated coefficients of variation of the
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pik ranged from about 4 to 12 percent. It was not possible té
calculate a comparable quantity for the raw ratios.

4.1.3 Leaf Area Estimates for the Sacrificed Trees

For each sacrificed tree, (3.10) was used to obtain a the -

estimated leaf area, and the sample analog of (3.15) was used to
estimate its MSPE. For the sacrificed trees arranged in order of
increasing DBH, Table 3 gives ;, its standard error SE =
(MSPEJ)l/2 and proportional contributions to the MSPE due to
branch sampling and to area-to-weight rétio estimation. These
components were obtained by evaluating (3.15) with certain
changes to L. Specifically, if a census of branches were taken,
thus making the leaf weights of all branches known (assuming
negligible measurement errors), then in the expresion for 3 given
by (3.14), %, and §12 would both be equal to f,, because ; would
be equal to y. As a result, the middle term of (3.15) would
vanish. Let MSPE1l denote (3.15) evaluated withZ changed in this
way. The normalized difference (MSPE-MSPEl)/MSPE is then shown
in Table 3 under the heading "BRANCH SAMPLING" as the
proportional contribution of branch sampling to the MSPE.

. Similarly, if the ratios of leaf area to leaf weight were
" already known on théIStratum level, one would«réplace'i with R
so that in Z; ¥ would be replaced by T°I and U=I.  Let MSPE2
denote (3.15) evaluated with Yy =‘TZI and U=I. The first term vanishes

regardless of the value of 12. We have also neglected the third term under the

assumption that 12 is negligible . The proportion of MSPE due to ratio estimation
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then equal to 100(MSPE - MSPE2)/MSPE and is shown in Table 3 in
the last column entitled "RATIO ESTIMATION". A perusal of the
two reductions (ignoring those trees for which a census had
already been taken), reveals that neither was consistently
greater, thus indicating that the manpower expended was
well-allocated between‘the tasks of collecting total foliage
weights for the sampled branches and measuring areas and weights
for the small foliage samples. |

To quantify the effect on the overall plot LAI estimates, of
errors in the leaf areas of the sacrificed trees, the MSPE of the
plot estimates was evaluated with and without the effect of these
errors, and then compared. (See Section 4.3).

4.2 Between Trees

4.2.1 Fitting the Dimension Analysis Model

Previous work on non-destructive dimension analysis models
for aspen trees (cf. Peterson, et al (1970) or Pollard (1970 and
1972)) has utilized DBH as the main predictor of leaf area. The
additional inclusion of tree height (H) to linear or loglinear
models was at best marginally better. For this study, Woods and
Botkin (1986) obtained the measurement Hl which made it possible
to use inféfmation about the size of the tree crown, say its
volume, as a predictor. This was done by modeling the crown as a
cylinder or cone which enables one to approximate the crown
volume by c(H-Hl)wz, where w is the crown width at its base ‘and ¢
is a constant. The crown width was not directly measured in this

study, so DBH was used as a surrogate. As a result, functions of
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the dimension analysis model. Figure 6 illustrates the 5
relationship between leaf area and VOC by plotting the former
against (VOC)l/2 for the 32 sacrificed trees.

The DBH values for the trees encountered in the subplots
‘ranged from less than 1 cm to about 40 cm. Preliminary studies
indicated that the leaf area was roughly proportional to (VOC)l/2
for small trees and to (VOC)2 for large ones. Rather than suffer
the awkwardness of working with two separate models, it was
decided to use both powers of VOC as predictors, so that in

1/2, V0C2]T. The prediction equation

(3.20) the vector x = [VOC
(3.21) thus is
n = g,(voc)*/? + g, (voc)? (4.1)
where ; is the predicted leaf area and the coefficients g; and g,
are given by (3.23). For leaf area measured in mz,vﬁ and Hy in
m, and DBH in cm, 91 and g, vwere calculated as 0.39476 and
2.94887 x 10-7 respectively.
- 4,2.2 The Error Variance Function
Using the methods of Section 3.2.2, the estimated variance

~

function v(x) given by (3.31) was calculated as

v(x) = .35858 (m)l+4 (4.2)

Recall that ;(5) estimates v(x), the conditional variance of a
tree's leaf‘érea given x. Taking values of x observed on the
sacrificed trees as typical, the estimated coéfficient of
variation [;(5)]1/2/; ranges from about 0.6 for a small tree (DBH
about 2 cm.) to about 0.15 for the largest trees (DBH about
35lcm.).
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4.3 Plot-Level Results - Error Analysis

The leaf area index was estimated for the 32 plots using
(4.1) to obtain an estimated leaf area for each tree in the
subplots, then summing and normalizing by the sum of the subplot
areas. Standard errors were estimated as [61 + 5211/2 where 5i
and 62 are given by (3.36) and (3.39) respectively. Table 4
shows the sampling fraction (E), estimated LAI (L;I), its
standard error (SE) and its coefficient of variation (CV) for
each plot. In this table, the plots have been ordered by their
LAI estimates. '

By looking at 61 and 62 separately 1t can be seen whether
large standard errors in LXI can be attributed to the
heterogeneity of a given plot (as quantified by Ql) or to the use
of the dimension analysis model (as quantified by 02). A further

breakdown can be made by separating the two terms of Q2. The

q (1)

first term, Q2 -2

(a.) “x..

1=

X.., reflects the uncertainty in

the estimates of the regression coefficients and could be made
arbitrarily small by taking a sufficiently large sample of

sacrificed trees. The second term 02(2) = (a.)—z

ZZV(xij),
' represents the true model error and/or -lack of fit. This term
cannot be reduced by increasing the number of sacrificed trees.
In Table 4, the three components of the estimated MSPE -
62(1), 62(2) and 61 are shown for each plot under the respective
headings "COEF EST VAR", "MODEL VAR" and "SAMP VAR". In every
case, the dimension analysis modél was by far the smallest
contributor to the MSPE. The ratio of the sampling component

(Ql) to the coefficient estimation component (02(1)), is shown

under the column headed "RATIO". An examination of this ratio
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suuUws THAT LOr <4U of the 32 plots, the coefficient estimatio? ’
component exceeded the sampling component, thus suggesting th;tf'
it would have been worthwhile to estimate the regression
coefficients more accurately by taking a larger sample of
sacrificed trees.

In a few plots~(e.g. Nos. 20, 21 and 89) the sampling
component especially predominated. An examination of the
nondestructive data for these plots showed that a few very large
trees were heavily influencing the LAI estimate. As an example,
Plot #21 contained a tree with a DBH of’45 cm - considerably
larger than the greatest DBH (35.4) in the sample of sacrificed
trees, thus resulting in an extrapolated (and probably spurious)
leaf area estimate which contributed about 30% of the entire
plot's leaf area estimate!

The effect of estimating the leaf areas of the sacrificed
trees by sampling and ratioing manifests itself in the Yok of

-~ .

Section 3.2.1. By setting Yok equal to zero in the evaluation of
ﬁ in 62(1), one can see WEat the MSPE of the plot LAI estimates
would have been had the leaf areas of the sacrificed trees been
known. On the average, the standard errors (SE) in Table 4,
would have been reduced by about 7% for the various plots if the

vok were zero. The smallest reduction was on Plot#98 (2%), while

the largest reduction was 13% on Plot 71.

5.0 CONCLUSIONS AND RECOMMENDATIONS .
In this paper, we have shown how various components of error
may be identified and quantified in a typical ecological

estimation problem. While it is true that many of the models
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employed were approximate, it is felt that they represented
reality well enough to provide a viable means of assessing the
relative contributions of the many sampling and estimation errors
encountered, as long as extrapolation was avoided. The results
of this analysis can be used to design future surveys of this—
type more efficiently in terms of both sampling strategy and
determination of sample size. Below, we list some improvements
that could be made to the COVER experiment that have been
identified as a direct result of this analysis.

1. Number of Sacrificed Trees - Civenvthe same sampling
strategy on the plots, the number of sacrificed trees should be
at least doubled. Doing so for this study would have reduced the
number of plots from 20 to 11 for which the dimension analysis
coefficient estimqtion error component was dominant. Tripling
the number of sacrificed trees would leave only five such plots.

2. Branch Sampling and Regreésion Within Sacrificed Trees -
Care ‘should be taken to include all non-representative and
particularly the iargest branches in the sample for which foliage
weights were measured. .The range of the predictor variable (e.g.
branch depth of crown) for the uhsampled branches should be
well-covered by the values of this variable for the sampled
branches iﬁ the regression.

3. Area-to-Weight Ratios - Multiple samples éf foliage
should be taken from each crown stratum to provide a means of
corroborating the additive model (3.6) and for variance :

estimation. At least rough estimates of sampling fractions for
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cuas uaLa woulu De useLlul 1n the estimation ot the variance of
’ »

the ratios. T,

4., Dimension Analysis - With a iarger number of sacrificed
trees, it would be better to fit separate models for small and
large trees. For the few extremely large plot trees which are
bigger than the largest sacrificed trees, extra effort should be
made to estimate their leaf area by intense non-destructive
measurements to avoid the sort of extrapolation that occured on
Plot #21. For example, even a rough.assessment such as "twice
the leaf area of a neighboring smaller tree" would probably be
more accurate than a gross extrapolation of the fitted dimension
analysis model.
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TABLE 1. Sacrificed Tree Data

Tree No. DBH H N NS n
11 0.90 ..2.20 9 9 8
8 1.20 2.80 18 14 13
10 1.45% 3.20 27 17 17
7 1.80 3.78 37 16 15
6 2.00 4.60 34 l6 15
9 2.20 3.10 17 13 12
31 3.40 5.35 28 16 16
32 3.40 5.70 25 19 18
30 3.50 5.35 28 19 18
17 7.30 9.20 52 20 18
16 9.10 9.40 35 19 17
15 10.50 11.50 51 20 18
29 13.00 16.10 20 13 12
28 13.70 15.90 20 13 12
13 15.10 16.70 49 18 16
27 15.40 17.40 24 14 13
3 15.80 15.60 63 63 59
5 17.30 15.50 67 67 62
1 19.4Q 23.00 40 40 37
21 19,50 19.35 20 13 12
18 21.50 23.10 66 15 12
24 22.50 22.50 59 13 11
4 22.60 18.10 60 59 55
25 22,80 22.40 33 12 11
2 23.00 22.50 47 47 43
19 25.10 23.80 27 14 13
26 25.20 22.50 49 10 9
12 27.80 23.50 42 15 13
22 30.20 23.50 40 16 15
20 32.10 23.80 64 13 12
14 32.40 23.50 36 13 12
.. 23 35.40 22.50 48 13 12
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. TABLE 2. Within-tree Regressions: Foliage Weight = b0+b1dc+b2dc2
COEFE‘ICIENTS t - VALUES
TREE DBH p | by b, b, | by b, b,
11 0.90 21 0.13 - 35.53 | 0.12 - 2.:
8 1.20 2| 0.47 3.22 -- | 1.86 1.98 --
10 1.45 21 0.56 6.04 -= | 1.06 2.27 --
7 1.80 3] 0.35 3.54 8.78 | 0.38 0.50 0.¢
6 2.00 21 1.26 -- 19.59 I 7.60 -- 7.2
9 2.200 2| 4.06 - 23.87 | 2.62 - 1.C
31 3.40 2| 1.55 - 30.48 | 3.26 - 7.8
32 3.40 2| 0.93 -- 22.83 | 2.79 -- 9.6
30 3.50 2 | - 4.64 11.39 | - 1.88 2.8
17 7.30 | -- 37.41 14.03 ! -- 1.84 0.6
16 9.10 2 | - 28.79 36.97 | -- 2.57 2.2
15 10.50 2 | - 33.79 49.06 | -- 1.71 2.4
29 13.00 2 | - 49.69 54.58 | - 1.76 2.1
28 13.70 2 | -- 29.31 91.48 | - 1.64 5.1
13 15.10 31 0.50 47.47 29.72 I 0.40 4.84 3.9
27 15.40 31 0.32 . 59.62 56.82 | 0.11 2.61 3.9
3 15.80 2 | - 31.64 34.17 | - 6.23 7.3
5 17.30 2 | - 32.18 22.59 | - 6.55 6.2
1 19.40 2 | - 43,97 28.60 | -~ 3.72 4.5|
21 19.50 2| - 36.23 80.81 | - 1.15 4.2
18 21.50 2 | - 62.01 33.31 | - 2.33 1.8¢
24 22.50 3] 1.72 12.38 113.67 | 0.54 0.31 5.1t
4 22.60 31 0.93 27.61 34.62 | 0.74 2.75 6.1:
25 22.80 31 0.71 - 54,08 78.40 | 0.36 2.07 7.3t
2 23.00 2 | - 26.29 . 37.82 | - 2.15 5.9¢
18 25.10 1| - 140.56 -- I - 9.10 --
26 25.20 2 | - 50.61 20.55 | -— 2.14 1.5¢
12 27.80 2 | -- 28.81 42.86 | -— 0.56 2.9¢
22 -30.20 2| 4.14 - 89.18 | 0.74 - 10.4¢
20 32.10 3| 2,47 61.71 46.91 | 0.60 1.15 2.27
14 32.40 2 | -- 16.16 71.00 | —-- 0.74 7.7¢
23 35.40 2 | - 77.40 82.64 | - 1.95 5.81
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i Taple 3. Within-Tree Leaf Area Estimation: Error Analysis
2

‘ - o PROP MSPE PROP MSPE

- ,'—,_A" ‘ . BRANCH RATIO

Tree DBH 5 I SE SAMPLING EST
11 0.90 0.43 0.05 .000 1.000
8 1.20 0.18 0.03 .449 .551
10 1.45 0.37 0.05 .460 .540
7 1.80 0.91 0.17 .793 .207
6 2.00 0.85 0.10 .204 .796
9 2.20 1.12 0.22 737 .263
31 3.40 3.19 0.42 .435 .565
32 3.40 2.03 0.15 .225 .775
30 3.50 1.41 0.11 . 435 .565
17 7.30 10.41 1.88 .875 <125
16 9.10 8.31 1.15 .583 <417
15 10.50 14.32 1.47 412 .588
29 13.00 11.01 1.28 .772 .228
28 13.70 10.97 1.23 .270 .731
13 15.10 8.79 0.82 .252 .748
27 15.40 13.94 1.00 .448 .552
3 15.80 19.39 1.55 .000 1.000
5 17.30 21.44 l.61 .000 1.000
1 19.40 31.44 2.24 .000 1.000
21 19.50 17.46 1.53 .260 .740
18 21.50 18.38 2.24 .888 112
24 22.50 49.93 5.53 .487 .513
4 22.60 28.71 2.06 .000 1.000
25 22.80 41.60 3.92 .212 .788
2 23.00 38.67 2.49 .000 1.000
19 25.10 27.20 2.85 .463 .538
26 25.20 23.71 4.86 .818 .182
12 27.80 72.29 7.95 .668 .333
22 30.20 74.20 8.35 .352 .648
20 32.10 52.49 8:01 .795 .205
14 32,40 102.01 10.75 .443 .557
23 35.40 120.80 13.29 .416 .584
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TABLE 4. Plot-Level LAI Estimates and Error Ana]ysis

S

COFF EST  MODEL

. NO. OF A SAMP
“PLOT  TRegs f LAI SE Ccv VAR VAR VAR R}
99 319 0.0889 1.293 0.193 0.1493 0.0135 0.0218 0.0020 0.¢
- 86 301 0.0678 1.593 - 0.315 0.1977 0.0626 0.0331 0.0032 l.¢
94 458 0.0889 1.642 0.227 0.1382 0.0140 0.0352 0.0024 0.:
36 236 0.3556 2.047 0.225 0.1099 0.0321 0.0157 0.0030 2.C
95 569 0,0889 2.058 0.439 0.2133 0.1344 0.0553 0.0031 2.4
83 175 0.3556 2.323 0.211 0.0908 0.0204 0.0206 0.0034 0.9
16 100 0.3556 2.413 0.223 0.0924 . 0.0269 0.0190 0.0038 1.4
20 231 0.3556 2.416 0.429 0.1776 0.1507 0.0304 0.0031 4.9
89 297 0.0756 2.4298 0.598 0.2462 0.2750 0.0769 0.0058 3.5
80 369 0.3556 2.451 0.240 0.0979. 0.0337 0.0202 0.0037 1.6
82 202 0.3556 2.496 0.255 0.1022 0.0281 0.0336 0.0033 0.8
3 95 0.3556 2.507 0.244 0.0973 0.0362 0.0193 0.0041 1.8
93 86 0.3556 2.536 0.246 0.0970 0.0349 0.0215 0.0039 1.6.
87 1394 0.0656 2.591 0.431 0.1663 0.0807 0.0872 0.0080 1.0«
84 644 0.0733 2.634 0.403 0.1530 0.0669 0.03906 0.0048 0.7:
69 377 0.0889 2.789 0.406 0.1456 0.0575 0.1013 0.0059 0.5¢
81 145 0.3556 2.815 0.212 0.0753 0.0135 0.0271 0.0043 0.4¢
85 230 0.3556 2.815 0.294 0.1044 0.0137 0.0699 0.0031 0.1¢
71 498 0.0889 2,835 0.354 0.1249 0.0148 0.1048 0.0054 0.14
75 161 0.3556 2.911 0.288 0.0989 0.0200 0.0592 0.0036 0.33
a8 262 0.3556 2.924 0.370 0.1265 0.1041 0.0281 0.0045 3.70
72 167 0.3556 2.933 0.297 0.1013 0.0243 0.0601 0.0036 0.40
96 173 0.3556 3.033 0.253 0.0834 0.0146 0.0454 0.0041 0.32
73 107 0.3556 3.034 0.195 0.0643 0.0035 0.0299 0.0048 0.11
92 108 0.3556 3.071 0.236 0.0768- 0.0150 0.0361 0.0045 0.41
21 144 0.3556 3.082 0.799 0.2592 0.5574 0.0724 0.0090 7.69
74 142 0.3556 3.134 0.238 0.0759 0.0088 0.0437 0.0044 0.20
90 186 0.3556 3.167 0.248 0.0783 0.0153 0.0416 0.0046 0.36
97 167 0.3556 3.264 0.305 0.0934 0.0247 0.0642 0.0042 0.38
77 105 0.3556 3.322 0.263 0.0792 0.0297 0.0339 0.0055 0.87
88 370 0.0811 3.378 0.533 0.1578 0.1279 0.1482 0.0083 0.86
79 283 0.3556 3.945 0.291 0.0738 0.0298 0.0480 0.0067 0.62¢

A URATIO" = (SAMP VAR)/(COEFF EST VAR)
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Figure 2: Tree Dimensions
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Figure 4: Branch foliage weight as a function of branch depth of crown
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Figure 5: Comparison of smoothed to raw ratios: Leaf area to leaf weight
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